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ABSTRACT
Mobile advertising has become inarguably one of the fastest grow-
ing industries all over the world. The influx of capital attracts in-
creasing fraudsters to defraud money from advertisers. There are
many tricks a fraudster can leverage, among which bot install fraud
is undoubtedly the most insidious one due to its ability to imple-
ment sophisticated behavioral patterns and emulate normal users,
so as to evade from detection rules defined by human experts. In
this work, we propose an anti-fraud method based on heteroge-
neous graph that incorporates both local context and global context
via graph neural networks (GNN) and gradient boosting classifier
to detect bot fraud installs at Mobvista, a leading global mobile
advertising company. Offline evaluations in two datasets show the
proposed method outperforms all the competitive baseline methods
by at least 2.2% in the first dataset and 5.75% in the second dataset
given the evaluation metric Recall@90% Precision. Furthermore, we
deploy our method to tackle million-scale data daily at Mobvista.
The online performance also shows that the proposed methods
consistently detect more bots than other baseline methods.1
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1 INTRODUCTION
With the prevalence of smartphones, mobile ads has become one of
the fastest growing industries all over the world. According to [6],
the total spend on mobile advertising worldwide has reached to
$240.95 billion which increases by $51.82 billion from 2018, and will
continue to rise to $286.47 billion in 2020. With ad spend contin-
uously growing for mobile marketing budgets, ad fraud attempts
continue to rise as well, following the influx of capital. Among all
the fraudulent activities, mobile app install fraud detection is a hot
topic in the mobile industry.

As illustrated in Figure 1, a general mobile ad workflow consists
of several steps as following: i) an ad request is sent from user
device to ad server. ii) the selected ad is displayed in the user device.
iii) the user clicks the ad and is redirected to the app store. iv) in
the meantime, relevant information such as ad impression and ad
clicks is sent to Mobile Measurement Partner(MMP) for attribution
and further analysis. v) the app is installed and the related metadata
is sent to MMP. vi) MMP performs attribution to determine which
ad channel should claim credit for the install. vii) final result is sent
to advertiser and the associated ad channel.

In the context of mobile app install fraud which our work aims
to tackle with, the advertised product is an app, and the associated
ad campaigns for this product are distributed to one or several ad
channels. An ad channel can claim credit from the advertiser if some
user clicks the ads from this ad channel and installs the app, given
that MMP attributes this user install to this ad channel correctly.
Furthermore, an ad channel could be a website or a mobile app, or it
could be a proxy of several apps. A fraudster, oftentimes cooperating
with malicious ad channels, may leverage certain tricks to confuse
the attribution system such that the install is falsely attributed and
the malicious ad channel collect money from advertisers without
subsequent user actions.

Among all the commonly seen fraudulent tricks such as click
injection, click spamming, device farm and bots. Bots are malicious
codes that run a set program or action. While bots can be based on
real devices, most bots are server-based. Bots aim to send clicks,
installs and in-app events for installs that never truly occurred. Bot
install fraud is considered one of the most difficult types of fraud
to detect. According to the latest report of Appsflyer2, they have
blocked over 1.5 billion fraud installs over the last three years, the

2https://www.appsflyer.com/
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fraud installs resulted by bots accounts for more than 50% for the
entire mobile ad install fraud activities[1]. At Mobvista there are
over one million app installs per day. With too many bots unde-
tected, our customers’ advertising budget is wasted without any
conversion or effect, which is eventually reaped by the malicious
app developer or intermediate malicious ad channels. Furthermore
the reputation of Mobvista as an online ad platform is also severely
corrupted. Hence in this work, our goal is to detect bot install fraud
at Mobvista such that we can prevent advertisers’ budget from
being wasted without any real conversion. However bots are hard
to detect due to several reasons: (1) Most of bots are compromised
computers that are essentially normal users without any fraudu-
lent historical events. (2) Bots are programmable and are able to
implement sophisticated logic to emulate a normal user’s behaviors.
(3) In an adversarial setting, bots can get evolved by upgrading its
software component and evade updated detection rules. As a result,
expert-defined rules oftentimes failed to detect bot install fraud.

Many machine-learning based methods in mobile advertising
aim to tackle the problem of ad click fraud or impression fraud,
yet very few works solve install fraud, especially those incurred
by bots. However, as we mentioned before, bot install fraud is a
critical issue that severely affects the mobile advertising industry,
causing billions of dollar losses for advertisers globally every year.
Furthermore, many of the proposed methods resort to techniques
such as ensemble methods, e.g., Random Forest [2] and XGBoost [3].
Although these methods are capable of mining rich fraud patterns
with sophisticated feature engineering, they are unable to model
various types of relations among entities with structural informa-
tion, which may be suboptimal as bots oftentimes behave in a
clustered manner. As a result, a hybrid learning method that can
well capture its local context as well as global context should be
superior to the traditional methods, where local context refers to
the data instances associated with the same channel, and global
context refers to all the data instances in the given dataset.

In this work, we address this challenge by proposing a hybrid
learning method that incorporates graph neural networks (GNN)
and prior knowledge from gradient boosting machine to detect
bot install fraud in mobile advertising. Directly applying either
traditional or state-of-the-art GNN [10, 15, 20, 30] is not the best
option to tackle our task. Existing GNN models are built upon the
assumption that node embeddings in the same cluster tend to be
similar. However, in mobile advertising bot installs and normal
installs coexist in the same ad channel or publisher, similar em-
beddings in the same cluster would create sparse feedbacks and
are unlikely to help with the classification problem. Hence, in this
work we design a novel message passing mechanism based on our
specific problem and graph structure, enabling each ad channel
learn a representation that is able to reflect its preference towards
bot installs and normal installs associated with it.

Our main contributions can be summarized as follows: (1) To
the best of our knowledge, we are the first to study the problem
of bot install fraud detection in the context of mobile advertising,
which is a critical issue in industry yet not covered in the literature
so far. (2) We propose a novel bot install fraud detection model
which works on heterogeneous bipartite graph at Mobvista. The
proposed learning method is able to incorporate both local and
global context by leveraging graph neural networks and gradient

boosting classifier. (3) We design a novel message passing mech-
anism that takes into account the graph structure, enabling each
channel to learn a representation that is able to reflect its preference
towards bot installs and normal installs associated with it. (4) We
build a deep ensemble model that incorporates prior knowledge
from gradient boosting classifier by leveraging leaf embeddings
in our model, which can also be viewed as a model initialization
methods using prior knowledge of gradient boosting classifier. (5)
We conduct experiments in real-world data at Mobvista, and the
results demonstrate the superior of detecting bots by our model.

2 RELATEDWORK
Various methods have been proposed for mobile ad fraud detection
problem. [31] studied the problem of detecting duplicate clicks over
decaying window models [32] in which two streaming algorithm–
Group Blooms Filter and Timing Blooms Filter– are proposed which
achieves zero false negative and low false positive in detecting du-
plicate click events. Jiarui and Chen [11] leverage cluster analysis to
detect crowdsourcing click fraud, given the observation that there
are some distinct characteristics in this form of click fraud, there-
fore, by constructing IP-Advertiser bipartite graph and perform
DP-Means clustering method, the malicious groups can be detected
without determining the cluster number.

More recently machine learning based approaches have been
leveraged for ad fraud detection [5, 9, 26, 28], and most of them rely
on extracting robust features and feed the dataset into an ensem-
ble classifier or boosting machine to detect fraudulent event. Dou
et al. [5] studied the problem of download fraud in App Market
by setting up a honeypot to capture the ground truth fraudulent
activities, and identify the download fraud leveraging feature en-
gineering and XGBoost [3]. Taneja et al. [26] approach the mobile
ad click fraud problem by utilizing Recursive Feature Elimination
and decision tree classifier with Hellinger-Distance [24] due to its
robustness to skewness. Recent years there is a growing interest
in deep learning based algorithm on graph. Motivated by the work
in [21], various forms of graph embedding methods have been pro-
posed to extract node embeddings [8, 20, 23, 27] without requiring
any labels. However, node features are not utilized,and embeddings
for unseen nodes in the graph cannot be generated in this scheme.
Graph neural network is further presented, in which the limitations
of graph embedding are compensated. One of the most prominent
progress is known as Graph Convolutional Networks (GCN) [15],
which exploits multiple propagation layers to aggregate neighbor-
hood information and enlarge the receptive field for each node in
the graph. Hamilton et al. [10] proposed GraphSage and introduces
computational sub-graph for each vertex in the graph, which en-
ables scalable graph representational learning. Graph Attention
Network [30] further introduces attentional mechanism into graph
neural networks which is currently leveraged extensively in Natural
Language Processing [13, 18, 29].

3 PROPOSED METHOD
3.1 Preliminary
Graph neural networks are introduced in [7] as a generalization
of recursive neural networks that can directly deal with a more
general class of graphs, e.g., cyclic, directed and undirected graphs.



BotSpot:A Hybrid Learning Framework to Uncover Bot Install Fraud in Mobile Advertising CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

Defferrard et al. [4] introduce a graph neural network with polyno-
mial parametrization for the localized filter to reduce the number
of hyperparameters to alleviate overfitting and reduce computa-
tional cost. Kipf andWelling [15] further refine the model discussed
above by proposing a layer-wise linear model where the degree of
Chebyshev Polynomial limited to 1. However, by stacking multi-
ple linear layers with non-linearity, a rich class of convolutional
filters can still be recovered. Enlightened by Kipf and Welling [15],
a more generalized version of graph neural networks is proposed
by Hamilton et al. [10] which builds a computational sub-graph for
each vertex in the graph and information is propagated from the
neighborhood layer-wise consisting of two operators: Aggregation
and Concatenation which can be written as follows:

ℎ𝑘𝑣 =𝑊𝑘 •𝐴𝐺𝐺𝑘

({
ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁 (𝑣)

})
ℎ𝑘𝑣 = 𝛾

(
CONCAT

(
ℎ𝑘𝑣 , 𝐵𝑘ℎ

𝑘−1
𝑣

))
∀𝑘 ∈ {1, . . . 𝐾}

(1)

where 𝑁 (𝑣) is a function that returns the set of neighbors of vertex
𝑣 and 𝑘 denotes the 𝑘𝑡ℎ layer in the computational graph for vertex
𝑣 , and there are 𝐾 layers in total. 𝑊𝑘 and 𝐵𝑘 are the trainable
parameters in the model for affine transformation at layer 𝑘 . 𝐴𝐺𝐺
denotes the aggregation function that aggregates features or latent
embeddings from the neighborhood of vertex 𝑣 , and 𝐶𝑂𝑁𝐶𝐴𝑇 is
the operator that concatenates self embedding with the embedding
from its neighborhood after aggregation function. Finally, 𝛾 is the
non-linear activation function, e.g., Relu.

3.2 Problem Setup
Our method aims to identify bot install fraud at Mobvista. This
problem can be defined as a binary edge classification problem in
a bipartite heterogeneous graph, where the graph consists of two
types of nodes, namely device node and channel-campaign node.
A device node refers to a user device that have installed one or
more advertised app, and an channel-campaign node refers to an
ad campaign on an associated ad channel. An edge connecting a
device node and an channel-campaign node refers to an app install
occurred at a user device which is attributed to an ad campaign
from a specific ad channel. As an edge represents an install in the
graph, our method aims to classify every edge into normal install or
bot install. Mathematically, the problem can be defined as follows:
We have bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) where 𝑈 denotes the set of
channel-campaign nodes, 𝑉 denotes the set of devices. An edge
𝑒𝑖 𝑗 is presented in the graph if and only if an app is installed by a
certain device 𝑗 ∈ 𝑉 that can be attributed to the ad campaign from
its associated channel, denoted by 𝑖 ∈ 𝑈 .

To this end, we have formulated our problem as an edge classifi-
cation problem formally.

3.3 Label Acquisition
Bot installs are hard to identify. In this work, we rely on a subset
of installs that belongs to some specific ad campaigns for which
advertisers has purchased anti-fraud service from a third party
such as Appsflyer, therefore labels for these installs are known,
although the acquired labels are somewhat noisy. The resulted
graph is built using only the subset of installs and can be trained in
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Figure 2: The Model Architecture of BotSpot.

a fully supervised manner. At inference time, the remaining installs
without purchasing anti-fraud service is able to be classified into
normal install or bot install.

3.4 Model Design
In this section, we detail how we tailor the general GraphSage
framework in Eq.(1) that works on a bipartite heterogeneous graph
for bot install fraud detection, then we show how to incorporate
prior knowledge from gradient boosting classifier as an model
initialization method to extract global context to further enrich
representations for each install. The overall model architecture of
our proposed method is shown in Figure 2.

3.4.1 Asymmetric Message Passing. Due to the service trait at
Mobvista, the graph we construct is highly asymmetric, that is,
|𝑁 ( 𝑗) | = 1 and |𝑁 (𝑖) | >> |𝑁 ( 𝑗) |. Here, 𝑁 (𝑖) are the set of vertex
𝑖’s neighbors. Furthermore, due to the fact that |𝑁 ( 𝑗) | = 1 for most
of device vertex 𝑗 ∈ 𝑉 , there will be many isolated sub-graph in
the graph. As consequences, the typical multi-layer propagation
scheme won’t help in this setting as the information couldn’t propa-
gate to further vertex. As discussed in [17], GCN is a special form of
Laplacian smoothing which makes embedding of the nodes in the
same cluster look similar. This characteristic makes GCN a key suc-
cess in many classification problems in social networks. However,
this may be suboptimal for our problem as in the same channel,
both normal installs and bot installs present, this kind of smoothing
effect will actually make the learning problem more difficult.

In this work, to generate a more discriminative embedding for ev-
ery edge, we propose a modification of the original message passing
mechanism proposed in [10] to force each channel-campaign node
to explicitly learn an representation that incorporates its preference
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to bot installs and normal installs which serves better purpose for
our classification problem.

Channel-campaign node. As mentioned previously, we want
every channel-campaign node to generate a discriminative repre-
sentation by capturing its preference towards bot install and normal
install. To achieve this, we force channel-campaign node explicitly
aggregate information from bot installs and normal installs sepa-
rately and obtain a convex combination from both sides based on
attentional mechanism. Mathematically, it can be stated as follows:

To classify an edge 𝑒𝑖 𝑗 ,∀𝑖 ∈ 𝑈 ,∀𝑗 ∈ 𝑉 , the embedding aggregated
from bot installs for node 𝑖 is given by:

ℎ𝑘𝑖 =𝑊 𝑏𝑜𝑡𝑠
𝑘

•𝐴𝐺𝐺𝑘

({
ℎ𝑘−1
𝑏

,∀𝑏 ∈ 𝑁 (𝑖)
})

s.t. class (𝑒𝑖𝑏 ) = 1 & 𝑒𝑖𝑏 ≠ 𝑒𝑖 𝑗

(2)

Where 𝑘 ∈ {1, 2, . . . , 𝐾} denotes the 𝑘𝑡ℎ layer for vertex 𝑖 and
we have 𝐾 layers in our model,𝑊 𝑏𝑜𝑡𝑠

𝑘
is the trainable parameter

matrix for the aggregation function in the 𝑘𝑡ℎ layer for bot install
and 𝑐𝑙𝑎𝑠𝑠 (.) denotes the function that returns the class label of an
input edge. It is imperative to satisfy the constraint 𝑒𝑖𝑏 ≠ 𝑒𝑖 𝑗 for
every edge 𝑒𝑖 𝑗 in the training stage, otherwise the ground truth
information will leak out and result in overfitting. Similarly in
Eq.(2), the embedding obtained from normal installs can be written
as:

𝑔𝑘𝑖 =𝑊 𝑛𝑜𝑟𝑚𝑎𝑙
𝑘

•𝐴𝐺𝐺𝑘

({
𝑔𝑘−1
𝑏

,∀𝑏 ∈ 𝑁 (𝑖)
})

s.t. class (𝑒𝑖𝑏 ) = 0 & 𝑒𝑖𝑏 ≠ 𝑒𝑖 𝑗

(3)

where𝑊 𝑛𝑜𝑟𝑚𝑎𝑙
𝑘

is another set of parameters for linear transfor-
mation for neighborhood aggregation from normal installs. The
embedding 𝑧𝑘

𝑖
that attends over bot installs and normal installs for

node 𝑖 at the 𝑘𝑡ℎ layer can be obtained by performing a convex
combination as following:

𝑧𝑘𝑖 = 𝜆𝑖𝑘
𝑏𝑜𝑡𝑠

ℎ𝑘𝑖 + 𝜆𝑖𝑘
𝑛𝑜𝑟𝑚𝑎𝑙

𝑔𝑘𝑖 ,∀𝑖 ∈ 𝑈 (4)

where 𝜆𝑖𝑘
𝑏𝑜𝑡𝑠

, 𝜆𝑖𝑘
𝑛𝑜𝑟𝑚𝑎𝑙

denotes the attention coefficient of bot installs
and normal installs respectively for node 𝑖 at the 𝑘𝑡ℎ layer and is
obtained as follows:

𝑠𝑖𝑘1 = 𝐹𝐹𝐶𝑁𝜃

(
𝑞𝑘−1𝑖 ⊕ ℎ𝑘𝑖

)
𝑠𝑖𝑘2 = 𝐹𝐹𝐶𝑁𝜃

(
𝑞𝑘−1𝑖 ⊕ 𝑔𝑘𝑖

) (5)

where 𝑞𝑘−1
𝑖

denotes the final output embedding for vetex 𝑖 at the
(𝑘−1)𝑡ℎ layer and ⊕ denotes the concatenation operator to concate-
nate two vectors. The unnormalized score 𝑠𝑖𝑘1 and 𝑠𝑖𝑘2 are learned
from a feed-forward neural network, parametrized by model param-
eter 𝜃 , denoted by 𝐹𝐹𝐶𝑁𝜃 (.). The attention coefficient is further
obtained with softmax function:

𝜆𝑖𝑘𝑡 =

exp
(
𝑠𝑖𝑘𝑡

)
∑2
𝑇=1 exp

(
𝑠𝑖𝑘
𝑇

) ,∀𝑡 ∈ {𝑏𝑜𝑡𝑠, 𝑛𝑜𝑟𝑚𝑎𝑙} (6)

The final representation for node 𝑖 at the 𝑘𝑡ℎ layer after concatena-
tion operator in BotSpot is defined as following:

𝑞𝑘𝑖 = 𝛾

(
𝑧𝑘𝑖 ⊕ 𝐵𝑘𝑞𝑘−1𝑖

)
(7)
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Figure 3: The tailored message passing mechanism for
channel-campaign node to summarize information from
bot installs and normal installs.

The base case for the multi-layer propagation is as follows:

ℎ0𝑖 = 𝑔0𝑖 = 𝑞0𝑖 = 𝑥𝑖 (8)

where 𝑥𝑖 denotes the original feature vector for node 𝑖 . The tailored
message passing mechanism designed for channel-campaign node
is illustrated in Figure 3.

Device node. For the device node, with only one install event
occurred for most of the devices, we have much less structural
information we could resort to. The message passing mechanism
won’t help to extract better features in this case,We therefore utilize
raw device features without any message passing method.

3.4.2 Incorporating Global Context. Our proposed method above
can well utilize structural information as well as expert-defined
features to detect bot install fraud. However, this model may still
be sub-optimal due to its inability of acquiring global information.
As discussed earlier the heterogeneous graph consists of many iso-
lated connect components with almost all the devices connected
to only one single neighbor, which makes the multi-layer propaga-
tion inadequate for the nodes to generate embeddings with global
context. Furthermore, the structural information may sometimes
complicate our learning problem. While it is the case that some
publishers and ad channels could be inherently malicious that are
filled with abundant fraudulent installs, yet in the adversarial game
of fraud and anti-fraud, bots are becoming more and more intelli-
gent, they will disguise themselves by seeking for the benign ad
channels with plenty of normal users, for which case our model
may be hard to detect. However, there may still be traces recog-
nizable for fraudulent activities with global context provided. By
incorporating global context we may be able to detect more bot
fraud installs. Hence, we leverage LightGBM[12] to extract global
context. Specifically, We first train a LightGBM with each data in-
stance to be ℎ𝑖 𝑗 = 𝑥𝑖 ∥𝑥 𝑗 ,∀𝑖 ∈ 𝑈&∀𝑗 ∈ 𝑉 , where 𝑥𝑖 and 𝑥 𝑗 denotes
the original feature vector for channel-campaign node 𝑖 and device
node 𝑗 and ℎ𝑖 𝑗 denotes the feature vector for edge 𝑒𝑖 𝑗 . With the
trained classifier, we then leverage leaf nodes of each decision tree
in the boosting classifier for each data instance.

Motivated by [21] where each word is represented as a dense
vector rather than a one-hot sparse vector by which word semantics
and relative relations are well captured, the index of each leaf
node for every week learner in LightGBM also incorporates certain
semantic meanings, therefore each leaf node in a decision tree is
also embedded in a embedding matrix where the leaf index map to
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the corresponding row in the matrix. Formally, let 𝑙𝑒𝑎𝑓 _𝑒𝑚𝑏𝑖
𝑗
be

the embedding of the 𝑗𝑡ℎ leaf node of the 𝑖𝑡ℎ decision tree 𝑇 , and
𝐿𝑒𝑎𝑓 _𝐸𝑚𝑏𝑖 denotes the embedding matrix for each decision tree𝑇𝑖 .
For 𝑁 total decision trees, the embedding matrix 𝐿𝑒𝑎𝑓 _𝐸𝑚𝑏𝑖 ,∀𝑖 ∈
{0, 1, . . . , 𝑁 − 1} is our model parameters that can be jointly trained
via optimization algorithms such as SGD or Adam[14].

3.4.3 Leaf node aggregation. We discuss the aggregation methods
for leaf embeddings in this section. In this work we experiment
with mean pooling, concatenation and BiLSTM and adopt mean
pooling for leaf embedding aggregation as it requires fewer model
parameters than other methods and doesn’t get overfitted while
the number of decision trees grow. Moreover, it is more efficient in
terms of computational resources.

3.4.4 Leveraging high-cardinality features. Several features serves
as strong indicators for fraud detection based on previous expert
knowledge. However, the nature of high-cardinalitymakes it prohib-
itive to be leveraged by gradient-based algorithm: one-hot encoding
might bring too many parameters into our model which leads to
overfitting. Furthermore, the orthogonality represented by one-hot
encoding scheme doesn’t reflect the interdependency among vari-
ous feature values. To deal with this problem, we utilize a similar
approach as described in Section 3.3.2: each high-cardinality fea-
ture is embedded in a trainable embedding matrix, where each row
represents a feature vector for a high-cardinality feature.

3.4.5 Sampling Strategy. According to our observation, bots con-
trolled by bot master tend to act in burst manner, as a result, bot
installs occurred in the same duration tend to reveal similar behav-
ioral patterns. Based on this fact, we employ a time-biased approach
to sample each data instance: data that are closer to the date of
online experiments are sampled with more weights. Intuitively, this
helps the model better capture the fraud patterns in the current
time duration. Additionally, the positive samples are sampled with
more weights to offset the gap between the number of positive sam-
ples and negative ones. Mathematically, the weight is calculated
as:𝑤𝑖 =

√
1
𝑇𝑖

×𝐶𝑖 , where𝑤𝑖 denotes the sampling weight for data
instance 𝑖 , and 𝑇𝑖 denotes the time difference to the starting date of
the online experiments in terms of days, e.g., the closest day to the
starting time is 1. 𝐶𝑖 is the coefficient to reweight the data instance
𝑖 , for positive samples, 𝐶𝑖 is the log ratio of negative samples and
positive samples,and for negative samples, 𝐶𝑖 is equal to 1.

3.4.6 Model Training. To estimate model parameters of BotSpot,
we employ cross-entropy loss as the final loss function over each
mini-batch: 𝐿 = − 1

|𝐷 |
∑
𝑖∈𝐷 𝑦𝑖 ln𝑝𝑖 , where |𝐷 | is the size of each

mini-batch 𝐷 and 𝑝𝑖 denotes the estimated probability of data in-
stance 𝑖 . Additionally, the dataset is highly imbalanced in terms of
positive and negative samples which poses difficulty for model train-
ing as the gradient information from negative samples may over-
whelm those from positive samples. To deal with this issue, we lever-
age hard negative mining to stabilize the training procedure[19]
without overwhelming gradient flow from negative samples. Over-
fitting is a perpetual problem in optimizing deep neural network
models, to alleviate this problem, dropout[25] has been applied to
our model. Furthermore, L2 regularization is also used.

Table 1: Statistics of the two datasets, each of which consists
of 7-day install events. Note that Dev. Node refer to device
node and Chan. Node refer to channel-campaign node.

#Dev. Nodes #Chan. Nodes #Normal Edges #Bot Edges

Dataset-1 889,969 1,968 757,536 140,235
Dataset-2 1,181,278 1,545 1004,623 197,895

4 EXPERIMENTS
In this section, we detail our experimental setup, report and analyze
the results.

4.1 Offline Evaluation
4.1.1 Datasets. To evaluate our proposed model, two datasets are
built, each of which consists of 7-day install events in Mobvista
which exhibits different bot fraud patterns. The statistics of the
two datasets are shown in Table 1. Training/Test dataset is split
randomly with a ratio of 75% and 25%.

4.1.2 Evaluation Metrics. In practice, our first priority is to detect
fraudulent activities with high precision as we don’t want to remove
normal installs which would harm the interest of downstream ad
channels. Second to that, the recall should be as high as possible as
more bot installs can be detected such that the advertisers’ budget
won’t be wasted. Thus, as in [16] we also adopt the evaluation
metric𝑅𝑒𝑐𝑎𝑙𝑙@𝑇𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 which is the recall value while the model
achieves a precision of 𝑇 , where 𝑇 varies depending on the service
class.We set𝑇 to be 80%, 85% and 90%, respectively. Precision-Recall
curve is also illustrated in the experiments to visualize the capacity
of various algorithms to identify bot installs.

4.1.3 Baseline Models. To evaluate the performance, we compare
our BotSpot with several competitive methods detailed below:

Neural Network(MLP). A 4-layer MLP is used for the same
edge classification problem where the feature vector for each edge
is obtained by concatenating device node features and channel-
campaign node features and the edges features is then fed into the
MLP classifier.

MLP+Leaf Embedding. In addition to a 4-layer MLP, the leaf
embedding component is included to extract global context. This
baseline model also exploits 200 decision trees to obtain leaf em-
beddings which is the same as in BotSpot. This baseline is designed
to facilitate the analysis of leveraging leaf embeddings to extract
global information.

LightGBM. A well-known boosting algorithm widely used in
industry, serves as a strong baseline model in our experiment. In
the experiments, a LightGBM with 300 decision trees are leveraged
as our baseline model. We use the same hyperparameters for the
baseline method and BotSpot except for the number of decision
trees- in BotSpot only 200 trees are leveraged.

BotSpot-Local. The graph neural network component with tai-
lored message passing mechanism in BotSpot serves as another
baseline classifier to demonstrate the effectiveness to extract local
structural information.

GraphSage. GraphSage[10] is a SOTA graph neural network to
extract node features. In this work, it serves as a baseline method
to extract node features and oabtain features for each edge which
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Table 2: Performance of BotSpot and the baseline methods. Note that in the table we let the notation Rec@𝑥% P be shorten for
Recall@𝑥% Precision.

Dataset 1 Dataset 2
Model Rec@90% P Rec@85% P Rec@80% P Rec@90% P Rec@85% P Rec@80% P
MLP (Baseline model) 0.6678 0.6981 0.7412 0.1391 0.1962 0.3305
LightGBM 0.7094 (+ 6.23%) 0.7509 (+ 7.56%) 0.7912 (+ 6.75%) 0.1560 (+12.15%) 0.2856 (+45.57%) 0.3723 (+12.65%)
MLP+Leaf Embedding 0.7449 (+11.55%) 0.7859 (+12.58%) 0.8205 (+10.70%) 0.1965 (+41.27%) 0.2998 (+52.80%) 0.4115 (+24.51%)
GraghSage 0.7323 (+ 9.66%) 0.7781 (+11.46%) 0.8159 (+10.08%) 0.1736 (+25.68%) 0.3102 (+58.10%) 0.3943(+19.43%)
GAT 0.7398 (+10.78%) 0.7848 (+12.42%) 0.8194 (+10.55%) 0.1742 (+25.23%) 0.2754 (+40.37%) 0.3859 (+16.76%)
BotSpot-Local 0.7474 (+11.92%) 0.7937 (+13.69%) 0.8281 (+11.72%) 0.1843 (+33.65%) 0.3064 (+56.17%) 0.4045 (+22.39%)
BotSpot 0.7613 (+14.00%) 0.8029 (+15.01%) 0.8334 (+12.44%) 0.2078 (+49.39%) 0.3178 (+61.98%) 0.4243 (+28.38%)

Table 3: Effect of varying number of decision trees in BotSpot. Note that in the table we let the notation Rec@𝑥% P be shorten
for Recall@𝑥% Precision.

Dataset 1 Dataset 2
Model Rec@90% P Rec@85% P Rec@80% P Rec@90% P Rec@85% P Rec@80% P
BotSpot-Local(Baseline) 0.7474 0.7937 0.8281 0.1813 0.3064 0.4045
BotSpot-50-trees 0.7384(-1.20%) 0.7857(-1.01%) 0.8223(-0.70%) 0.1945(+7.28%) 0.3022(-1.37%) 0.4167(+3.01%)
BotSpot-200-trees 0.7613 (+1.89%) 0.8029 (+1.16%) 0.8334 (+0.64%) 0.2078(+14.61%) 0.3178(+3.72%) 0.4243(+4.89%)
BotSpot-400-trees 0.7694 (+2.94%) 0.8108 (+2.15%) 0.8421 (+1.69%) 0.2134(+17.70%) 0.3245(+5.91%) 0.4296(+6.21%)
BotSpot-800-trees 0.7592(+1.58%) 0.8037(+1.26%) 0.8361(+0.97%) 0.2113(+16.55%) 0.3204(+4.57%) 0.4283(+5.88%)

is then fed into a 2-layer MLP for the final edge classification. This
baselinemethodwould facilitate the comparisonwith Botspot-Local
which modified the aggregation methods based on GraphSage.

GAT. Another SOTA graph neural network to extract node fea-
tures. Similar to GraphSage, this baseline method would serves as
a strong baseline method for BotSpot-Local.

4.1.4 Experiment Results. We report the results of various methods
as shown in Table 2. First, an observation is that model performance
varies significantly in these two datasets. The underlying reason
may be that the two datasets exhibit different bot fraud patterns-
bot installs clustered in several malicious ad channels in the first
dataset; while for the second dataset bots are distributed more
evenly in many ad channels, which poses a harder learning prob-
lem. Furthermore, bot fraud patterns tend to shift dynamically and
frequently as fraudsters might alter their fraud strategy, trying to
evade from being detected. Therefore, it is probable that in the
test set, some bot fraud patterns are not covered in the training
set for the second dataset, which results in the gap of predictive
performance between the two datasets.

Other than that, the two datasets exhibit similar patterns on
model performance. As shown in Table 2, without relational infor-
mation and global information, MLP performs worst among all the
methods. However, MLP+Leaf Embedding performs much better,
demonstrating the importance of global context. BotSpot, with re-
lational information acquired from our tailored message passing
mechanism, performs slightly better than MLP+Leaf Embedding,
which proves the effectiveness of our tailored message passing
scheme.

Furthermore, as shown in Table 2 BotSpot-Local outperforms
Graphsage and GAT in the first dataset, while for the second one
BotSpot-Local and GraphSage performs similarly. This phenome-
non may demonstrate that while bots are clustered in several ad
channels, by feeding explicit information from neighboring device

nodes to channel-campaign node using the proposed aggregation
method, feature representation can be extracted to capture the ad
channel’s preference towards bot installs and normal installs, thus
benefit the classification problem. While this characteristic does
not exhibit in the graph for the second dataset, BotSpot-Local be-
haves similarly as GraphSage and GAT.We may also observe that in
the first dataset, BotSpot-Local outperforms MLP+Leaf Embedding
while for the second dataset, the latter performs better. This may
be due to the same reason as above that for the first dataset, local
context obtained from graph neural networks matters more as bots
are behaved in a clustered manner which is not the case in the
second one. As a result, global context acquired from leaf embed-
dings may carry more importance than local context in the second
dataset. However BotSpot, with local information incorporated, still
outperforms MLP+Leaf Embedding.

The PR curve for the two datasets is illustrated in Figure ?? to
show the performance for various methods. As can be seen, BotSpot
consistently outperforms other competitive baseline methods in
terms of the area beneath the curve.

4.1.5 Varying number of decision trees in BotSpot. Intuitively, with-
out sufficient number of decision trees, BotSpot is unable to capture
a holistic view of global context, while excessive amount of deci-
sion trees may result in model overfitting. In this subsection, we
study the effect brought by varying the number of tree estimators
in BotSpot. We set the number of decision trees to be 50, 200, 400
and 800 for both datasets with the same hyperparameter settings,
respectively. The experiment result is shown in Table 3. As shown
in the table, BotSpot achieves the best predictive performance while
the number of decision trees is 400 for both datasets. However, this
is probably not the optimal tree structure as we choose the number
of decision trees arbitrarily, and the hyper-parameter setting is
fixed which may lead to suboptimal tree structure. Admittedly, one
may perform hyper-parameter search over various combination of
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(a) dataset-1

(b) dataset-2

Figure 4: PR-curve for Offline Evaluation.

hyperparameters; however it may increase time cost significantly.
Thus, how to learn the tree structure efficiently and effectively
without extensive model selection is still an open research question,
which will be addressed in our future work.

4.2 Online Experiments
In this section, we deploy our proposed method as well as MLP,
MLP+Leaf Embedding, GraphSage and BotSpot-Local in our produc-
tion environment. We evaluate the model performance by counting
the total number of detected bot installs. We first obtain the thresh-
old at which every model achieves 90% precision in validation set,
and use that threshold in online experiments to detect bot installs.
As shown in Figure 5, our proposed method consistently outper-
forms other baseline methods in terms of number of detected bot
installs. As a strong baseline method, MLP+Leaf Embedding also
works well without any graph convolutions. Furthermore, BotSpot-
Local is able to detect more bots than GraphSage in the given time
period consistently. Finally, all methods outperform MLP signifi-
cantly as is the case in our offline evaluations.

4.3 Implementation
Currentlywe adoptmini-batch implementation as in GraphSage[10]
which is easier to transfer to a distributed learning framework for
higher efficiency. We make use of PyTorch[22] for implementation
of BotSpot and all the experiments are performed in a server with
one NVIDIA RTX 2080Ti GPU. Although our current approach is
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not highly-efficient as it doesn’t leverage full batch matrix multipli-
cation or distributed system for model training, thus takes around
3.1 hours per epoch and typically 4 epochs are required for model
convergence. However, as we currently build a 5-day graph and
detect bot installs for the next day and timeliness is not required,
training time isn’t an issue. A relative improvement of at least
2.2% in the first dataset and 5.75% in the second dataset may still
compensate for the time cost, especially when there are over one
million app installs per day. The economical loss would be saved
significantly, furthermore, the reputation as an online ad platform
can be improved. In the future we are planning to deploy BotSpot
for distributed training, and the training time is expected to reduce
significantly.

4.4 Case Study
Finally, we present some cases in which bot installs are recalled
by BotSpot yet neglected by both BotSpot-Local and MLP with
leaf embedding. Unlike image and text data, each app install is
represented by various extracted features, which can be hard to
interpret. As a result, we choose one particular ad channel where
the prediction results vary significantly for all three models. As the
features associated with channels are identical for all the samples,
interpretability is enhanced. For the ad channel mentioned above,
there are 91 bot installs recalled by BotSpot yet not detected by the
other two methods. We examine these samples and conclude that
these bots share some common patterns- i) the device brands for
all the bot installs are rarely used in the local community, while
for the normal installs most of the device brands are mainstream,
and therefore the distribution significantly varies as illustrated in



CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Tianjun Yao, Qing Li, Shangsong Liang, and Yadong Zhu

Table 4: Presentation of several bot installs recalled by
BotSpot yet not detected by other two methods.

device_id carrier device_brand os_version

9c08cf8e4a30 jio 4g lava android-6
e36439c3848b vodafone in lava android-6
261f6bade3a3 airtel intex android-6
0b86584f574e idea swipe android-6

Figure 6. ii) all the OS versions for the bot devices are Android 6
while for the normal installs over 90% of OS versions are between
Android 7 and Android 9 as listed in Table 4. We conjecture that
BotSpot is able to recall these samples as it leverages local struc-
ture and is able to recognize the local fraud patterns the other two
methods fails to detect. Although BotSpot-Local utilizes local struc-
ture, it is unable to capture a full picture e.g., the channel-related
statistics and ip-related statistics, which leads to the ignorance of
these bots. MLP with leaf embedding detect 11 bots in the same ad
channel which is also recalled by BotSpot. However, ignoring the
local device brand pattern prevents it from detecting another 91
bot installs recalled by BotSpot.

5 CONCLUSION
Bot install fraud is a notoriously hard problem in mobile adverting
industry for its dynamically changing behavioral pattern which
causes great economical losses for advertisers and undermines the
ecosystem of mobile advertising industry. In this work, we address
this challenge by proposing BotSpot. We first show how to tai-
lor the naïve graph neural networks to adapt to our problem to
detect bot install fraud at Mobvista, and then we analyze its weak-
ness and propose a method to integrate global context via gradient
boosting classifier to improve the model performance. Our offline
experiments using real-world dataset at Mobvista proves the ef-
fectiveness of the proposed method for bot install fraud detection
which outperforms all the competitive baseline methods. We then
present the results of a 7-day online experiments, in which our
proposed method also outperforms all the candidate methods. Fi-
nally some canonical cases are studied to facilitate interpretation
among various methods. In future, we intend to extract more fine-
grained features to enhance model performance and experiment
with heuristic-based clustering for the device to make the graph
more balanced to take further advantages of the graph structure.
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